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TAKE HOME MESSAGES 
• Continuous analyses of integrated dairy farm data streams can provide novel insights for improved 

decision-making 
• The University of Wisconsin Dairy Brain project addresses dairy farm data integration and their value-

added applications as a continuous data-driven decision-making engine  
• The Dairy Brain’s Agricultural Data Hub (AgDH) is designed to ingest dairy data from multiple 

sources, establish their relationships, connect them, and make the data consistent and available from a 
single source  

• The Dairy Brain’s analytical modules encompass near real-time algorithms capable of performing 
longitudinal historical analyses, forecasting future performance, and prescribing the best course of 
action in a continuous loop through decision support tools connected to integrated dairy farm data 

• We demonstrate the Dairy Brain’s value proposition with two practical prescriptive applications. One 
addresses herd’s nutritional accuracy improvement. The other deals with maximizing genetic progress 
and profitability through reproductive management. 

 
 

INTRODUCTION 
Dairy farmers have embraced technologies that 
generate data streams from the dairy farming 
precision agriculture revolution (Bewley and 
Russell, 2010) that are difficult to manage 
because the resulting data ecosystem is large and 
complex (Ferris et al., 2020). When integrated, 
these data streams can uncover new insights and 
therefore improve decision-making and farm 
management (Liberati and Zappavigna, 2009). 
Permanent analyses of integrated data pipelines 
can help identify feeding and health problems 
(Arcidiacono et al., 2017), optimize reproduction 
performance (LeRoy et al., 2018), and improve 
the sustainability of the overall system (Wathes et 
al., 2008).  
 
Near real-time integration of milking, feeding, 
reproduction, behavior, and many other dairy 
farm record-keeping systems, however, is 
challenging (van der Weerdt and Boer, 2015). 
The lack of data integration and its subsequent 
interpretation and value-added utilization delays 
optimal actions, increases mistakes, and hides 
improvement opportunities, which ultimately 
decreases profitability and threatens the 
sustainability of modern dairy farm systems 
(Cabrera et al., 2020). Integrated big data 

analytics (such as data mining and machine 
learning techniques (Morota et al., 2018)) are 
necessary to ameliorate the combined biological, 
economic, and environmental uncertainties 
inherent to the production system (Wolfert et al., 
2017), but they require management of the 
quality, heterogeneity, and transformations of the 
data (Hashem et al., 2015).  
 
Any attempt to develop an interconnected system 
of data and services requires considerations and 
standards: dairy farm data tends to be “dirty” and 
data cleaning is not a priority because of a lack of 
a clearly defined value proposition (Ferris et al., 
2020). Data must be acquired and edited in a 
reliable fashion, passed to the analytical suite 
with a consistent structure, and then used for 
descriptive, predictive, and (or) prescriptive 
analytics (Ferris et al., 2020). Decisions could be 
strategic such as breeding or genetic progress 
protocols; tactical such as diet formulation or 
vaccination schedules; or operational such as 
health or hormonal treatments. Depending on the 
nature of the problem, these decisions are needed 
at different specified timeframes (e.g., hourly, 
daily, weekly, monthly, or yearly). 
 
  



 

BACKGROUND 
The University of Wisconsin Dairy Brain project 
(https://DairyBrain.wisc.edu) engages a 
transdisciplinary team of more than 15 dairy, 
data, and computer scientists working in close 

collaboration with progressive dairymen, 
extension educators, and allied industry tackling 
the issue of dairy farm data integration and their 
value-added applications (Figure 1). 
 

 

 
Figure 1. Core concept of the University of Wisconsin-Madison Dairy Brain, a continuous data-driven 
decision-making engine. 
 
 
As such, the UW Dairy Brain encompasses four 
main objectives: (1) Nurture a Coordinated 
Innovation Network (CIN) to shape the data 
service development. (2) Create an Agricultural 
Data Hub (AgDH) to gather, integrate, and 
disseminate multiple data streams relevant to 
dairy operations. (3) Build the Dairy Brain as a 
suite of analytical modules that leverages the 
aggregation service to provide dairy management 
insights as an exemplar of connected ecosystems 
services. (4) Design and execute an innovative 
extension program. This paper discusses the 
development of the AgDH and the Dairy Brain 
with a vision of the future for dairy management 
decisions based on permanent data integrated for 

predictive and prescriptive data analytics and 
includes the description of two analytical 
applications within the Dairy Brain domain. 
 

THE AGRICULTURAL DATA HUB 
(AgDH) 

Although the dairy farm data we are collecting at 
the moment is not “big data” in the scientific 
sense, it is handled with the principles and 
methodologies grounded in the big data literature 
(Wolfert et al., 2017; Ferris et al., 2020) because 
it will eventually become big data when more 
data streams, longer periods of time, and (or) 
more farms enroll in the project. The AgDH is 
designed as a system to ingest dairy data from 



 

multiple sources to establish the relationships 
among these sources and therefore make the data 
consistent and available from a single location, an 
aggregator entity to gather and disseminate 
multiple harmonized data streams to analytical 
tools (Ferris et al., 2020). It entails the 
transformation and joining of data streams as they 
are being generated and provides functional 
access to the resulting data. The AgDH collects, 
harmonizes, and stores information from siloed 
data streams on dairy farms and provides 
permissioned programmatic access to dairy-
specific data (Figure 2). 
 

Data Processing Flow 

Data pertaining to dairy farms, collected on- or 
off-farm, are stored in raw heterogeneous 
formats, which we think are better processed 
through an extraction, transformation, and 
loading (ETL) process to prepare the data to be 
accessed via a programmatic interface (Ferris et 
al., 2020). Within this process it is important to 
determine a protocol on how to treat missing, 
corrupt, or inaccurate (“dirty”) data, which is 
commonly found in dairy data settings. Dirty data 
will be primarily handled by advanced statistical 
techniques that consider conditions under which 
missing data occurred, such as multiple-
imputation, full information maximum 
likelihood, expectation maximization, and matrix 
completion (Dong and Pen, 2013). 

 

 
 
Figure 2. Siloed dairy data streams aggregated and disseminated by the Agricultural Data Hub (AgDH). 

 
  



 

In order to make the data consistent, independent 
of a particular vendor or data collection system, 
we are creating a universal relational framework 
with common keys to retrieve data efficiently. 
This requires entity matching to identify the same 
individual or object and matching within different 
data sources (Ferris et al., 2020). Although this 
might seem trivial with clearly organized data 
and only a few sources, it becomes a challenging 
task when disorganized data sources grow. We 
anticipate the need of machine learning 
approaches to merge dairy data streams (Mudgal 
et al., 2018). In addition, dairy data that are 
recorded as an event (e.g., disease onset, 
breeding, vaccination) must be handled within a 
taxonomy for events (Shuetz et al., 2018). We 
favor a centralized database storage as a data 
warehouse structure because some of the data can 
be characterized as ephemeral (stored in the 
original source for only a short period of time), 
highly heterogeneous, and likely unstructured 
(Ferris et al., 2020). 
 
Currently, the data collected from all data streams 
of the five cooperating farms is permanently 
stored in the University of Wisconsin-Madison 
Center for High Throughput Computing server 
(http://chtc.cs.wisc.edu/; Liang et al., 2018). Data 
from the farms are pulled into files in specific 
directories of the server, whose structure is 
determined by the data source (farm, data stream, 
date). When newly arriving files are sensed, our 
campus server identifies the data type and applies 
a predetermined processing pathway to extract 
the data to a universal database using data-
parsing logic specific to software vendor. Data 
are then transformed by a process of cleaning that 
involves data mining techniques and language 
processing scripts to detect and correct or remove 
corrupt or inaccurate data points. Cleaned data 
are then harmonized using a relational database 
with common key variables (entity matching) and 
with consistent format and structure, regardless 
of the source.  Harmonized data are loaded into 
the AgDH, which serves as our data warehouse 
and the main bridge among the farms, research 
activities, and development of decision support 
tools. Subsequent on-demand data retrieval is 
provided as needed (Shuetz et al., 2018). 
 

All programmatic code along with its 
documentation are safely versioned in our project 
GitHub repository (https://github.com/orgs/ 
DairyBrain/). We favor the Python® programing 
environment (Rossum and Drake, 2009) as the 
open source, object-oriented language for both 
database management and analytic modules 
development because it supports a large and 
increasing number of libraries, modules, and 
packages that promote modularity and code 
reuse. 
 
Applications Programming Interface 

Our system will link services via application 
programming interfaces (APIs), which are a 
modern and widely accepted approach for 
providing programmatic access to data and 
services. They make data available via web 
requests using a representational state transfer 
(REST) architecture and the well-established 
JavaScript Object Notation (JSON) format for 
data transfer. APIs work as a query operation by 
calling data or services through a standard http 
request that includes a set of input data. Output 
data normally comes in JSON format, comma 
separated values (CSV), or other (eXtensible 
Markup Language (XML) style. Its benefits 
include a clear definition of the expected data 
types retrieved and a highly flexible system that 
allows for controlled access to different data 
sources and services for different uses. As such, 
it is a modular system where analytical tools can 
be developed independently of each other and the 
data source. Therefore, it supports parallel 
development of data and analytical services 
(Ferris et al., 2020). Our APIs allow fine control 
of data and services access via a secure encrypted 
https connection in which users need to be 
approved and authenticated by the AgDH service. 
The vision is to make both the AgDH and the 
Dairy Brain analytical services accessible via 
APIs, which, however, would remain 
independent of each other. This setup will allow 
use of analytical services (Dairy Brain) with 
external data and/or use data services (AgDH) 
with external analytical services, if so desired. 
 

THE DAIRY BRAIN 

The Dairy Brain encompasses development of 
analytical modules and decision support tools 
with constant flow of integrated data. Our vision 



 

is near real-time analytical engines capable of 
performing longitudinal historical analyses as 
well as forecasting future performance informed 
by evolving past performance in a continuous 
loop (Cabrera et al., 2020). It will provide 
descriptive, predictive, and prescriptive analytics 
(Ferris et al., 2020). Descriptive analytics refers 
to key performance indicators or KPIs such as 
milk income over feed cost, feed efficiency, 
disease incidence, or pregnancy rate. Predictive 
analytics involve forecasts and projections such 
as the required replacements needed to keep the 
herd size stable, advance feed purchases for the 
season, cropland required to apply all the manure 
during the growing season, or likelihood of 
mastitis disease on a cow. Prescriptive analytics 
go one step further evaluating the tradeoffs of 
alternative course of actions and suggesting the 
best pathway to reach a goal within farm 
constraints.  Examples include determining the 
herd demographics that would yield the 
maximum profit (Ferris et al., 2020), proposing 
the best breeding, reproduction, and culling 
protocols to reach the greatest genetic progress, 
or recommending the best grouping strategy to 
maximize nutritional feed efficiency and net 
return (Barrientos-Blanco et al., 2020). Data-
informed decisions should follow farmer needs 
and be in tune with their short-, medium-, and 
long-term goals. Although some operational or 
short-term decisions informed by milk income 
minus feed cost ($/cow per day) or feed 
efficiency measured as milk produced over feed 
costs (lb milk/lb feed per day) require rather 
trivial calculations, these require (even demand) 
integrated data streams and a detailed ontology 
(Ferris et al., 2020). This becomes even more 
critical when decisions are envisioned for mid- or 
long-term dimensions applying predictive or 
prescriptive algorithms for strategic planning, 
that likely entail additional data streams, greater 
integration, and more advanced analytics.  
 
There are numerous current and upcoming 
opportunities for integrated data-driven decision 
making in diverse dairy farm management areas 
such as early disease detection (Weigel et al., 
2017; Fadul-Pacheco et al., 2019; Delgado et al., 
2019); cow-life profitability projections 
(Cabrera, 2010; 2012); reproductive performance 
(Giordano et al., 2012); environmental 

performance (Liang and Cabrera, 2015); 
nutritional grouping (Kalantari et al., 2016; Wu et 
al., 2019; Barrientos-Blanco et al., 2020), among 
others (Cabrera, 2018).  As specific examples, 
two practical prescriptive applications within the 
Dairy Brain concept are discussed hereafter. 
 
(1) Improving Nutritional Accuracy  

Motivation. Nutritional grouping and providing 
accurate diets to cows is an effective strategy to 
control cost, increase revenue, and enhance herd 
feed efficiency in dairy farms (Kalantari et al., 
2016). The underlying argument for nutritional 
grouping is the fact that arranging animals 
according to their density (unit/kg diet dry 
matter) of nutrient requirements (e.g., energy, 
protein, etc.) results in groups of cows that are 
more homogeneous in their diet requirements. 
This will result in less underfed or overfed 
animals and therefore cost savings and increased 
productivity (Cabrera and Kalantari, 2016). 
Underfed animals become underconditioned 
leading to decreased production and reproductive 
efficiency (Roche et al., 2013), whereas overfed 
cows become overconditioned with increased 
metabolic problems when freshening (Roche et 
al., 2009). Using only one or a few diets for the 
whole lactating herd cannot represent the 
nutritional needs of all the cows in the group, 
prompting farmers and nutritionists to provide 
diets with nutrient densities tailored to the needs 
of the top cow producers in a group and therefore 
overfeeding a great majority of the cows in the 
group (Cabrera and Kalantari, 2016). Costs of 
feed are consequently increased, and metabolic 
issues are exacerbated without improving 
productivity. Enhanced nutritional accuracy in a 
group results in feeding cows closer to their 
requirements (Cerosaletti and Dewing, 2008), 
which will increase milk productivity and 
decrease nutrient excretion (Kalantari et al., 
2016). Although farmers group animals in pens 
following diverse criteria (e.g., reproductive or 
lactation status), most of them rely on too few 
diets (Contreras-Govea et al., 2015) or diets not 
formulated according to requirements (Cabrera 
and Kalantari, 2016) because they find barriers to 
provide more diets (Contreras-Govea et al., 2015) 
and/or they do not have expert systems in place 
to adjust diets dynamically to the ever changing 
nutritional requirements of the group (Contreras-



 

Govea et al., 2015). The on-farm data streams, 
computer and feeding systems, and grouping 
protocols available today, coupled with data 
integration initiatives such as the Dairy Brain 
project provide an opportunity to facilitate 
effective application of nutritional grouping and 
accurate diet formulation on dairy farms 
(Barrientos-Blanco et al., 2020). 
 
Background. Currently, a large dairy farm (i.e., 
2,400 lactating cows), engaged with the Dairy 
Brain project, allocates cows into 14 pens 
according to parity (primiparous and 
multiparous) and stage of lactation (fresh, early, 
peak, and late lactation). For these groups, they 
formulate and provide 9 diets. In general, diets 
are for early, mid, and late lactation cows with 
some differences between primiparous and 
Multiparous cows. These diets are reformulated 3 
or 4 times a year according to feed prices and not 
according to cow groups’ nutrient requirements. 
In addition, individual cow nutritional 
requirements are not used as a criterion to allocate 
cows to pens. Every Tuesday (once a week), cows 
are moved between pens if their status has 
changed (e.g., early to mid-lactation), and/or if it 
is required by the natural flow of animals through 
pens to avoid over or under crowded pens. The 
decision to move cows is made by the manager 
using expertise or experience and a printed list of 
animals. The farm system currently in place takes 
time, lots of personnel effort, is prone to errors, 
and is inconsistent. Above all, it does not take into 
consideration nutritional requirements as a 
criterion to allocate cows to pens, and diets are 
not based on the nutritional requirements of the 
cows in each pen. 
 
Data integration. A prescriptive model was 
developed to propose a better allocation of cows 
to pens and to suggest better diets to provide in 
each pen, which requires continuous data inflow 
and data integration. At least two main data 
stream sources need to be connected 
permanently: the herd management software and 
the feed management software. In the case study 
farm, these were Dairy Comp 305 and Feed 
Comp. Although both are from the same vendor, 
Valley Ag Software (Tulare, CA), they are 
independent of each other and are not integrated. 
Connection of the two data sources is via two 

common merge reference variables: pen 
identification number (Pen ID, No) and 
observation date (Fdate, yyyy-mm-dd). Cow 
level data required (from Dairy Comp 305) are 
Cow ID, days in milk, parity, body weight (BW, 
kg at date available), milk yield (kg/day), milk 
protein (%), and milk fat (%). Pen data required 
(from Feed Comp) are dry matter intake (average 
kg/cow per day) and diet provided (ingredients, 
quantity, composition, and price). This data 
integration system is prepared for automation 
with minimal or no supervision. The farm uses 
the nutritional dynamic system software for diet 
formulation, which is based on the Cornell Net 
Carbohydrate and Protein System (Van Amburgh 
et al., 2015). The same software, feed library, and 
prices are used for diet re-formulation within the 
proposed prescriptive framework. 
 
Nutritional requirements. Cow-level, daily dry 
matter intake (kg DM), energy, NEL (Mcal), and 
grams of metabolizable protein (MP) are 
calculated based on NRC (2001) as a function of 
week of lactation, energy corrected milk, and 
BW. Body weight at the farm is available only 
once per lactation. This value is used internally to 
predict daily BW as a function of average herd 
BW, parity, and stage of lactation (Kalantari et 
al., 2016). NEL and MP are then expressed as a 
density by dividing them by the dry matter intake, 
Mcal and g/kg DM, respectively. 
 
Pen allocation. Respecting as much as possible 
the farm grouping protocols and procedures (e.g., 
cows are allocated to pens primarily by parity and 
stage of lactation), cows are clustered to pens 
according to their nutrient density requirements 
(NEL and MP) in an attempt to have greatest 
homogeneity within groups (closest nutritional 
requirements) while having greatest 
heterogeneity between groups. The number of 
cows per pen is constrained to maximum number 
of animals allowed in each pen. 
 
Diet formulation and comparison with current 

farm practice. Once cows are allocated weekly in 
pens, the diets are reformulated according to the 
pen group requirements following the classical 
83rd percentile cow on the predicted MP and NEL 
pen requirements (McGilliard et al., 1983). These 
diets should change every week but being 



 

consistent with current farm practice and for 
comparison purposes, average diet for an analysis 
period of 9 weeks was kept constant in each one 
of the pens. The proposed diet for each pen was 
the average of the 9-week period. At the end, the 
proposed framework was different than the 
current farm framework in (1) cows allocated to 
each pen and (2) diet provided to each pen. 
 
Outcomes. Savings on feed across all pens for all 
lactating cows adds a value of $31/cow per year 
when applying proposed framework compared 
with current farm practice (Table 1). This is 
explained by the fact that cows allocated to 
groups according to nutritional requirements 

determine greater nutritional accuracy (i.e., 
provided diets are closer to the cows’ 
requirement; Table 1). This economic value did 
not include potential increase in milk 
productivity, which would likely have an even 
greater economic benefit (St-Pierre and Thraen, 
1999; Kalantari et al., 2016; Wu et al., 2019). 
This value would also be much greater if diets 
would change weekly and if cows would be 
allocated to pens only based on their nutritional 
requirements. Other benefits not considered, but 
expected, would be improved herd health and 
decreased environmental footprint of the dairy 
operation (Cabrera and Kalantari, 2016). 

 
 
Table 1. Diet cost savings and improved diet accuracy of proposed Dairy Brain prescriptive nutritional 
accuracy practice 

Item Unit 
Farm current 

practice 

Dairy Brain 
proposed 
practice 

Difference in favor of 
proposed practice 

Diet cost $/cow/day 8.91 8.82 -0.09 
Diet accuracy index1 MP g/kg of DM 0.1876 0.1803 -0.0073 
Diet accuracy index1 NEL Mcal/kg DM 0.2171 0.2134 -0.0037 

1Diet accuracy index = aggregated difference between the density of diet nutrient content and each cow’s 
nutrient requirement: Better when lower. MP = metabolizable protein. NEL = net energy for lactation. DM 
= dry matter. 
 
 
In addition, not discussed here, the proposed 
grouping strategy based on cows’ nutritional 
requirements determines much better and 
consistent allocation of cows to pens across time 
with less undercrowded or overcrowded pens and 
much lower risks of misclassifications of cows to 
pens (Barrientos-Blanco et al., 2020). This 
exemplar proves the value added of a practical 
and feasible application when data streams are 
integrated and continuously analyzed within a 
prescriptive domain using the underline concepts 
of the Dairy Brain. 
 
(2) Application for Evaluating Reproductive 

Performance, Genetic Progress, and Culling 

Protocols 

Motivation. Improved reproductive performance 
causing oversupply of replacements together with 
increased demand of beef crossbred (dairy x beef) 
calves prompts the use of sexed and beef semen, 
which now account for about 40% (~20% sexed 

semen + ~20% beef semen) of the dairy breedings 
in Wisconsin (AgSource, Dairy, Wisconsin, 
Madison, WI). A logical strategy of breeding 
superior animals to sexed semen, while using 
beef semen on inferior animals, increases genetic 
progress because of intense selection and 
avoidance of inferior replacements (Ettema et al., 
2017) in addition to greatly reducing generation 
interval. The specific decision is challenging, 
however, because it needs to be combined with 
possible reproductive protocols, genetic 
information, genomic testing, age and status of 
the cow, culling protocols, among other factors. 
At the moment, for example, it is unknown which 
general option would be best for a particular 
farm: (1) use conventional semen, produce more 
than required replacement calves, and select to 
keep only the best required replacements via a 
genomic test; (2) use a combination of sexed and 
beef semen; or (3) use sexed, beef, and 
conventional semen and combine those with 



 

some level of a genomic test to select best calves 
to keep. More specifically, it is currently 
completely beyond farmers to determine which 
animals to enroll in which reproduction protocol, 
which animals to breed with which semen type, 
which animals are genomically tested with which 
test, and/or which animals select out of the herd 
and when, even though they might have all the 
information required to answer those questions. 
Our envisioned prescriptive model would require 
heavily integrated data from at least 
genetics/genomics, herd management, feed 
management, reproductive events, herd health, 
and culling policies. 

 
The Vision. We plan to develop an interactive, 
dynamic, and highly integrated decision support 
tool to optimize decisions of breeding, genetic 
selection, and culling policies for maximum 
profitability and sustainability. Stochastic 
lifecycle of individual animals will be simulated 
according to herd traits. Then, different 
management strategies will be imposed and 
compared. This would provide a predictive 
structure for anticipating long-term results to 
interventions. An example of possible outcomes 
related to genetic progress is shown in Figure 3.

 
 
 

 
 
Figure 3. Lifetime net merit (NM$) progress for heifers and cows for different breeding protocols starting 
in May 2020 (month 1) for different management strategies: (A) using sexed semen and beef semen and 
culling any extra female calves; (B) using conventional semen and culling any extra female calves; and (C) 
using conventional semen and culling any extra springers. (Li and Cabrera, Unpublished data). 
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We are interested, however, in providing a 
prescriptive framework to aid in the decision-
making. This would entail machine learning 
techniques and optimization to suggest the best 
course of action and adjust it as performance 
outcomes are analyzed. An example of 
prescriptive recommendation would be to use 
sexed semen in heifers for the first three 
inseminations; in first lactation cows at first 
breeding, and all other top 20% genetics adult 
cows. Then, use conventional semen in the 
remaining heifers and first lactation cows, and 
beef semen in the remaining breeding-eligible 
cows. 
 
This breeding protocol would result in 
approximately 20% more than the required 
number of replacements produced on farm. 
Therefore, the need to select this proportion of 
calves from the young stock herd right after birth. 
The next recommendation could be to rank all 
newborn female calves by their parents’ genetic 
average and apply a genomic test on the middle 
30% of animals, which will be used to re-rank 
calves and select the bottom 20% that will be 
sold. The integrated algorithm would assure this 
multi-step decision-making protocol will 
guarantee maximum profitability and best genetic 
progress at one specific time but always look 
towards the long-term horizon. The model and 
decision support tool would be connected to the 
farm data not only to use historical performance 
and to project possible future performance, but 
also to adjust, calibrate, and “learn” from the 
outcomes on the farm in a seamless connected 
ecosystem system of data and applications. 
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